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• Fusion products in reactor relevant plasma may affect NTM stability

• Study of fast ion effect on NTM requires comprehensive set of measurements
– TRANSP can provide time-dependent thermal and fast ion profiles self-consistently

• We show that passing fast ions can open gate for magnetic island growth in NSTX

• We assume single fluid model and fit modified Rutherford equation coefficients
– Kinetic neoclassical polarization current theory [1] is developed from single fluid model
– Modified Rutherford equation coefficients represent measurement uncertainties

Do fast ions affect magnetic island growth in NSTX?

[1] Cai, Nucl. Fusion 56 126016 (2016)
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• Tearing mode stability index [1]: Free energy within current density profile 

• Neoclassical drive term [1]: Drive caused by loss of bootstrap current
– Correction considering electron cross field transport [2]

• Polarization current stability term [3]: Subtlety involving polarization current
– Toroidal current with zero surface average that *may* stabilize and create the “gate”
– Conceptually explains island saturation but difficult to validate experimentally

• Curvature stabilization term [4]

Modified Rutherford equation governs island growth physics
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• Parallel current may form to replenish lost bootstrap current [1]
– Effectively neutral beam current drive
– Weakened if poloidal fast ion Larmor radius is larger than the magnetic island (≈ orbit loss)

• Kinetic neoclassical polarization current is recently suggested [2]
– Fast ion equivalent of neoclassical polarization current
– Loss of ion E×B drift leads to toroidal current that restores charge neutrality
– Takes effect after the formation of island separatrix – Not a trigger mechanism!
– Introduces ion density profile into magnetic island physics

Neoclassical polarization current is non-negligible for fast ions

1
𝑘!
𝜏"
𝑟#
𝑑𝑤
𝑑𝑡

= Δ$,&' 𝑤 + 𝑘(
16𝐽)*
𝑠 𝐽

𝑤
𝑤# + 𝑤+#

− 𝑘, 𝜀 ⁄. # 𝜌/0
#

𝑤# −
𝐿&!
𝐿&"

𝑛1
𝑛0

𝛽/
𝑤

𝐿2
𝐿,

#

− 𝑘3
𝛽/𝜀#

𝑟𝑤
𝐿2#

𝐿,

𝑞# − 1
𝑞#

[1] Hegna and Bhattacharjee, Phys. Rev. Lett. 63 2056 (1989)
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Kick model is used to evaluate MHD induced fast ion transport 

• NSTX #134020 is selected for analysis
– Neutral beam heated H-mode at BT = 0.44 T and IP = 0.9 MA
– Scenario for reliable n = 1 excitation [1] 
– Neutral beam power is stepped down intentionally [1]

• Neutron rate is measured using F/G scintillator [2]
– Simulated neutron rate using Kick model agrees better [3]
– Experimental measurement is used as-is
– Agreement is better considering measurement uncertainty

• Validated kick TRANSP is used for time dependent profiles
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Synthetic soft X-ray diagnostic reveals n = 1 mode structure

• Tomography of ̃𝜀!"# is difficult
– Forward-model line-integrated ̃𝜀!"#
– Adjust mode parameters
– Minimize difference vs. measured ̃𝜀!"#

• Structure of n = 1 system [1]
– Core kink mode (nonresonant)
– Magnetic island at q = 2 (i.e., m = 2)

• Input to kick TRANSP analysis
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Simulated island width is compared with experiment

• Coefficients are adjusted to minimize difference
– Fit result is a global minimum in optimization problem

• Onset of magnetic island is out of scope
– Simulation starts at 0.64 s
– Initial island width is set at 2 cm (3% of minor radius)
– We are concerned on the factor that makes island grow

• Island grows like w ~ t (as would a classical TM)
– Something needs to cancel out bootstrap current drive
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Bootstrap drive is likely canceled out by curvature stabilization

• Dimensionless stability indices (𝛥′) are compared
– Curvature stabilization is large in spherical tori [1]
– Balances bootstrap current drive
– Helps simulate island growth like w ~ t

• Classical drive decreases with time
– Need a push to maintain slope dw/dt
– Can polarization current term provide a timely push?
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Competing fast ion part in polarization current term is essential

• Classical drive decreases with time 
– Fast ion part provides chance for 𝛥′pol > 0
– Simulation cannot follow measurement w/o fast ion part

• Spike in fast ion part is likely a numerical error
– Ion density profile is flat near q = 2 surface
– Sometimes 𝐿$! ≡ ⁄𝑛% ∇𝑛% goes infinity as ∇𝑛% → 0
– Fast ion transport is typically inside q = 2 surface
– As a result, 𝐿$" does not go infinity, resulting in 𝛥′u spike 0.64 0.65 0.66 0.67 0.68
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Island saturates at orbit stochasticization threshold in NSTX

• Three NSTX discharges have different q profiles [1]
– As mode amplitude is scanned beyond measured…
– Fast ion transport starts to increase rapidly
– At DIII-D, threshold was at A / Ameas ≪ 1 [2]
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Energy exchange profile shows fast ions taking energy from TM

• Stochastic transport is confirmed
– Transport increases when…
– KAM surfaces “start to” break [1]

• More fast ion transport for bigger island
– Causes loss of passing fast ions
– Less kinetic neoclassical polarization current 
– Island drive is reduced & growth saturates
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• Passing fast ions is essential to opening the gate for island growth in NSTX #134020
– Kinetic neoclassical polarization current provides valuable degree of freedom for NTM drive
– Quantitative analysis of fast ion effect on NTM stability can be done using TRANSP

• Island growth saturation at orbit stochastiziation threshold is observed
– Qualitative agreement with passing fast ion induced island drive theory

• Future work includes…
– Further exploration into NSTX NTM database
– Benchmark of classical 𝛥′ calculation using STRIDE [1]
– Comparison with DIII-D experiment result: Less fast ion contribution is expected in DIII-D

Passing fast ions may be essential for island growth in NSTX

[1] Glasser and Koleman, Phys. Plasmas 25 082502 (2018)
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• Doppler shift makes measurement of island rotation frequency difficult
– Island rotation at plasma frame is small, whereas Doppler shift (noise) is large [1]
– Islands may change directions by turbulence [2]

• Assuming island rotates in ion diamagnetic direction (ω$ < 0):
– Polarization current is stabilizing, giving rise to explanation to observed island saturation [3]
– Kinetic neoclassical polarization current is destabilizing [4]
– However, this contradicts previous assessment [5]

Questions remain due to uncertainty in island rotation direction
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TRANSP is used to calculate profiles used for this study

• NSTX #134020 is selected for analysis
– Neutral beam heated H-mode at BT = 0.44 T and IP = 0.9 MA
– Scenario for reliable n = 1 excitation [1]

• TRANSP is used for profiles
– MSE [2] constrained equilibrium [3]: q = 2 at ψN = 0.4
– Fast ion density [4]: MHD induced transport captured at ψN < 0.4

0

10

0

1

0

10

0

1

0.0

0.3

0.0 0.2 0.4 0.6 0.8 1.0
ψ/ψa

0
2
4
6

NSTX #134020 0.70 s

(a) ne [1019 m-3]

(b) Te [keV]

(c) ni [1019 m-3]

(d) Ti [keV]

(e) nh [1019 m-3]

(f) q

Classical
Kick

[1] La Haye et al., Phys. Plasmas 19 062506 (2012)
[2] Levinton and Yuh, Rev. Sci. Instrum. 79 10F522 (2008)
[3] Menard et al., Phys. Rev. Lett. 97 095002 (2006)
[4] Podestà et al., Plasma Phys. Control. Fusion 56 055063 (2014) 



15/12J. Yang et al., “Nonlinear growth of magnetic islands by passing fast ions in NSTX” (PPPL-EP 07/06/22)

Kinetic neoclassical polarization current term introduces ni(ψN)

• Fast ions make ion density important for NTM

• CHERS provides ion density profile [1]
– Measures carbon density profile
– Additional input of Zeff is needed for ion density profile
– Ion density profile is needed for Zeff profile

• TRANSP validates measured ni near q = 2
– Core disagreement is likely due to carbon accumulation
– TRANSP considers CHERS + TS: Likely more accurate
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Special considerations are made for the simulation

• Geometric and magnetic ε are different in spherical tori
– Rigorously, toroidal effects come from magnetic εB [1]

𝜀& ≡
𝐵%$ − 𝐵'()
𝐵%$ + 𝐵'()

• Bootstrap current is calculated from NCLASS model [2]
– Evolution of ne and/or Te is not the same as that of βθ [3]

• Island location is used as extra constraint for q

0.0

0.2

0.4

0.6

0.8

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0
ψ/ψa

0

2

4

6

8

NSTX #134020 0.70 s

(a) ε

(b) Jφ [A/cm2]

(c) q

Geometric
Magnetic

Total
Ohmic driven

Neutral beam driven
Bootstrap

Magnetics + Te + MSE + MHD
Magnetics + Te + MSE

[1] La Haye et al., Phys. Plasmas 19 062506 (2012)
[2] Houlberg et al., Phys. Plasmas 4 3230 (1997)
[3] Fredrickson et al., Phys. Plasmas 7 4112 (2000)



17/12J. Yang et al., “Nonlinear growth of magnetic islands by passing fast ions in NSTX” (PPPL-EP 07/06/22)

Fit result is a global minimum in optimization problem

• Optimization problem can converge to…
– One of the local minima
– Global minimum

• If the solution is a global minimum…
– Fit result would be insensitive to initial guess
– Box scatter in result vs. input graph
– All coefficients show box scatter

• Coefficient k5 has large uncertainty
– Reasonable
– Involves cross field diffusion term
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Some physics are missing in the model

• Parallel current effect when island grows larger
– Poloidal Larmor radius for beam ions in NSTX ≤ 15 cm

• Different sources of bootstrap current [1]

• Effect of island rotation

• In NSTX #123870, classical 𝛥′ drops negative
– Need more freedom in driving terms
– At low magnetic shear, trapped fast ions may affect 

classical 𝛥′ [2]
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NTM-GRE analysis procedure has been developed

1. Run EFIT
2. Run NTM-SXR

– Determine [tnorm] and [tscale]
3. Run TRANSP (classical)
4. Run ORBIT
5. Run TRANSP (kick)

– Determine go/rerun based on [Sn]
6. Run NTM-GRE

• Measured: δB, SXR, and other profiles
• Total 6 steps and 2 decision points
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• Fast ions interact with Alfvén eigenmodes (AEs) [1]

• Fast ions interact with neoclassical tearing modes (NTMs)
– NTMs cause fast ion transport
– Model validated qualitatively [2] and quantitatively [3]
– NTM chirp is correlated with fast ion activity [4]
– Model validation inconclusive [3]

• Use TRANSP to study fast ion effect on NTM stability

Fast ions interact with NTM as they do with AE

[1] Podestà et al., Plasma Phys. Control. Fusion 59 095008 (2017)
[2] Zweben et al., Nucl. Fusion 39 1097 (1999)
[3] Heidbrink et al., Nucl. Fusion 58 082027 (2018)
[4] Fredrickson, Phys. Plasmas 9 548 (2002)

DIII-D

DIII-D
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Island width is calculated from Mirnov coil, EFIT, and SXR data

• TRANSP provides time-dependent solution
– Time-dependent input is provided for NTM parameters

• Island width time evolution 𝑤 𝑡 is [1]:
𝑤* = 𝑔 ⁄𝑟𝑏+𝑞 𝑚𝐵,𝑞-

where it relates Mirnov signal by 𝑏% ≈ ⁄1 2 ⁄𝑟& 𝑟 '()𝑏* [2]
– From linear, cylindrical, ideal, low-β tearing mode equation
– Constant 𝑔 accounts for simplifications

§ Determined by scaling to synthetic SXR diagnostics [3]

[1] Chang et al., NF 34 1309 (1994)
[2] La Haye et al., PoP 7 3349 (2000)
[3] Yang et al., Plasma Phys. Control. Fusion 63 045003 (2021)
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Magnetic island width and its error bar are determined from SXR

• Island width is related to Mirnov coil signal
𝑤 = 𝐶𝑤+,%-./

– Assuming SXR points are true, 𝐶 = ⁄𝑤!"# 𝑤.%+'/
– Standard deviation determines error 𝛿𝐶 = 𝜎 ⁄𝑤!"# 𝑤.%+'/
– Error bar is therefore 𝛿𝑤 = 2𝜎𝑤.%+$'/
– Take maximum error bar as a representative value
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What is triggering the NTM?

• NSTX is transient – βN is still rising
– ELM free
– Sawteeth free (qmin > 1)
– The “spontaneous” NTM seen in TFTR [1]

[1] Fredrickson, Phys. Plasmas 9 548 (2002)
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Does island grow like classical tearing mode in NSTX?

• Consider modified Rutherford equation
𝜏#
𝑟0
𝑑𝑤
𝑑𝑡 = Δ',-$ 𝑤 +

16𝐽2!
𝑠 𝐽

1
𝑤

– When classical term dominates
𝑤 ~ 𝐶𝑡
𝛿𝐵 ~ 𝐶𝑡*

– When bootstrap current term dominates
𝑤 ⁄𝑑𝑤 𝑑𝑡 ~ 𝑁
𝑤* ~ 𝑁𝑡
𝛿𝐵 ~ 𝑁𝑡

• Consider 𝑤~ 𝛿𝐵 for the last lines
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• Tearing mode equation is solved for helical flux functions
– Considered island width dependence [1]
– Considered reversed shear plasmas [2]
– Considered interaction with walls [3]

On calculation of classical delta prime

[1] White et al., Phys. Fluids 20 800 (1977)
[2] Fredrickson et al., Phys. Plasmas 7 4112 (2000)
[3] Nave and Wesson, Nucl. Fusion 30 2575 (1990)
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Previous assessment of island frequency in plasma frame [1]

[1] La Haye et al., Phys. Plasmas 19 062506 (2012)
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On curvature term in spherical tori

• Consider that relative strength ⁄𝐷# 𝐷34 is like 𝑓 𝜀
– Smaller for DIII-D but significant for NSTX
– Assuming 𝑞 ≈ 𝜀 ⁄𝐵0 𝐵, ⁄1 + 𝜅* 2
– Curvature term must be included for ST [1]

• Standard approximation works: See figure

[1] La Haye et al., Phys. Plasmas 19 062506 (2012) Reproduced from Figure 8 [1]

𝑘.
𝜏"
𝑟
𝑑𝑤
𝑑𝑡

= ∆' +
𝑟𝐷"
𝑤

+
𝑟𝐷=>
𝑤

𝑟

𝐷" ≈ − 𝑞# − 1 :𝐿2# 𝑟𝐿, 𝛽
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NSTX #134020

• H-mode with reliable rotating n = 1 onset
– IP = 0.9 MA, BT = 0.44 T
– PNB steps down from 3 to 2 MW at 0.7 s
– Lithiumization and n = 1 and n = 3 error field correction

• SXR/Mirnov conversion factor is CSXR = 1.17 ± 0.16

• Rotating n = 1 saturates at 6.3 cm
– Onset at around 0.63 s when δB = 1 G
– Peak at 0.704 s when δB = 10 G
– Rotation is steady at 7.6 kHz (q = 2 from LRDFIT06)

0.60 0.65 0.70 0.75 0.80
Time [s]

0
5

10
15
20

0.704 s

0
5

10
15
20
25
30

0
5

10
15
20

0

5

10

15
NSTX #134020: 2/1 NTM-SXR

 6.3( 0.9) cm

SXR

 7.6 kHz

10.0 G

w [cm]

f [kHz]

dB [G], raw

dB [G]



30/12J. Yang et al., “Nonlinear growth of magnetic islands by passing fast ions in NSTX” (PPPL-EP 07/06/22)

NSTX #123873

• Lower rotation
– IP = 1.0 MA, BT = 0.44 T
– PNB steps down from 4 to 2 MW at 0.6 s

• SXR/Mirnov conversion factor is CSXR = 1.91 ± 0.47

• Rotating n = 1 saturates at 6.2 cm
– Onset at around 0.58 s when δB = 1 G
– Peak at 0.621 s when δB = 14.2 G
– Rotation is steady at 5.9 kHz (q = 2 from LRDFIT06)
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NSTX #138940

• High-triangularity, low-elongation
– IP = 0.8 MA, BT = 0.44 T
– PNB = 4 MW is modulated by βN controller

• SXR/Mirnov conversion factor is CSXR = 1.25 ± 0.36

• Rotating n = 1 saturates at 13.6 cm
– Onset at around 0.87 s when δB = 1 G
– Peak at 1.048 s when δB = 8.1 G
– Rotation is steady at 9.6 kHz (q = 2 from LRDFIT06)
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Mode amplitude may have been underestimated by 20%
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Measured island width is 6.3 cm, 20% is 1.2 cm (smaller than SXR resolution)


